

China says more than half of its groundwater is polluted

Number of groundwater sites of poor or extremely poor quality increases to 59.6%, Chinese government says

Our water system is under pressure

Reservoir

Wastewater

Groundwater

Supply Well

Agriculture

HYDROLOGY

Chart: Globally, 7 Groundwater monitoring and data acquisition are pre-requisites for any effective management of groundwater resources and When w preservation, in terms of both the groundwater

resource itself.

A global analysis reveals grand it was a special analysis reveals grand and the availability of the groundwater renewable freshwater resources that depletes groundwater reserves and undermines human resilience to water scarcity in a warming world

A 3-YEAR DROUGHT HAS PUSHED CAPE TOWN TO CRISIS POINT

What if...

We could look under the subsurface?

What if...

We could:

- Manage asset integrity of an industrial site
- Better forecast droughts episodes
- Monitor source-plume evolution before, during and after site clean-up process
- Develop insights in degradation behavior of emerging contaminants like nitrates, pesticides of PFAS

Direct groundwater flux monitoring

iFLUX simultaneously monitors the groundwater flux and mass flux of contamination

- Groundwater flux
 - Flow rate
 - Direction
 - Vertical
 - Horizontal
- Groundwater level
- Groundwater quality
 - Point source
 - Diffuse pollution

Groundwater & mass flux concept

https://www.itrcweb.org/GuidanceDocuments/MASSFLUX1.pdf

iFLUX Services

Remediation Agriculture Infrastructure Environment

iFLUX Sensing

* Real-time flow & level monitoring

* Flow velocity & direction (0,5 - 500 cm/day)

* Quality screening (pH, EC, T)

* Wireless data access

* Direct or in-well installation

* In-well system (Ø 28 – 160 mm)

* Easy to install – multiple depths

* Horizontal & Vertical migration

Point & Diffuse sources

(metals, organic, PFAS, nitrates, pesticides, ...)

Irrigated Agriculture

Online monitoring dashboard Data visualisation & interpretation

iFLUX Passive sampling

80+ projects in 13 countries across EU towards cost-efficient site remediation

Patented and validated

Captures 90% of all pollution types

Accurate measurement of mass flux and direction of spreading

Potential remediation cost reduction up to 30%

iFLUX sensor overview

Direct vertical sensor

- 1 bidirectional flow sensor
- Temperature sensor
- River bed prototype V2.0

In-well vertical sensor

- 1 bidirectional flow sensor
- Temperature sensor
- Well Ø >40 mm
- Treewell prototype v1.0

Direct horizontal sensor

- 2+ bidirectional flow sensors
- Temperature / pressure / moisture sensor
- Prototype v3.0

In-well horizontal sensor

- 2+ bidirectional flow sensors
- Magnetometer/ gyroscope
- Well Ø >100 mm
- Prototype V1.0

iFLUX sensor - development roadmap

iFLUX

iFLUX sensor - testing cycle

Calibration bench

- Calibrate sensor chips & probes
- Pre & post contaminant exposure calibration & cleaning

Sandbox lab

- Test & validate sensor probes
- Different aquifer sands, flow rates, position of sensor devices
- Short & long term testing

Controlled field site

- Perform real subsoil testing & validation
- In depth exposures, short & long term
- Pumping tests to vary & control flow rates

Case study validation

- Real validation cases for end-users/clients
- Exposure to natural or current conditions
- Short & long term exposure

Pilot demonstrations

Restored freshwater marsh Lippenbroek, Belgium

iFLUX

Centuries of large-scale land reclamation

Centuries of large-scale land reclamation

Tidal marsh restoration Lippenbroek, Belgium marsh river restored marsh

Soil compaction by agricultural land use

Field set-up

Near creek zone

Marsh interior

iFLUX

Groundwater drainage

Real time flux measurements

iFLUX

Direct-push installation - Vertical flux near the creek

Vertical flux

iFLUX

In-well installation: Horizontal flux perpendicular to creek

In-well installation: Horizontal flux parallel to creek

In-well installation: Calculated total flux

Reduced groundwater dynamics

REMEDIATION

- Calculate source strength
- Optimize remediation design
- Shorten after care monitoring
- Manage your environmental liabilities

ENVIRONMENT

- Estimate (ground)water retention potential to bridge periods of drought
- Forecast and manage groundwater supply and limitations
 - Investigate large-scale water infiltration capacity

AGRICULTURE

- Monitor diffuse spreading of environmental contaminants
- Manage groundwater depletion
- Set-up smart drainage systems

INFRASTRUCTURE

- Set-up smart dewatering systems
- Investigate local infiltration capacity

NEW PILOT?

Tim Op 't Eyndt – co-founder & CEO

www.ifluxsampling.com